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Abstract

The main goal of a congestion avoidance algorithm is to maximize throughput
and minimize delay (Jain & Ramakrishnan 1988). While TCP Reno achieves
high throughput, it tends to consume all of the bu�er space at the bottle-
neck router, causing large delays. In this paper we propose a simple scheme
that modi�es TCP Reno's congestion avoidance algorithm by throttling back
the opening of the congestion window once an increase in round-trip time is
perceived. We call the scheme TCP-BFA and have implemented it in the ns

network simulator and in BSD 4.4. We show through simulations and mea-
surements of real tra�c on the Internet that TCP-BFA results in lower router
bu�er occupancies and lower delays while maintaining a throughput similar
to that of TCP Reno. The advantages of TCP-BFA are (1) smaller router
bu�er size requirements, (2) an order of magnitude improvement in network
power (the ratio of throughput to delay), (3) fewer packet losses, (4) faster
detection of multiple losses due to lower retransmission timeout estimates,
and (5) smoother tra�c patterns.
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1 INTRODUCTION

TCP is the most widely used transport protocol for today's Internet data
applications. However, the performance and operation of TCP's adaptive re-
transmission and congestion control mechanism is one of the most widely
debated issues in the research community. Revisions for TCP have been pro-
posed over the years (e.g. Jacobson 1988, Jacobson 1990, Jacobson, Braden &
Borman 1992, Brakmo, O'Malley & Peterson 1994, Hoe 1996, Mathis, Mah-
davi, Floyd & Romanow 1996, Mathis & Mahdavi 1996, Wang & Crowcroft
1991, Wang & Crowcroft 1992, Floyd 1995), with Jacobson's paper (Jacobson
1988) representing a major milestone. Some of these proposed changes have
been widely adopted and are part of TCP implementations today.
The source has the primary responsibility for TCP's congestion avoidance
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and control. The sink simply sends ACKs back to the source for the data it
receives; no explicit congestion control information is sent back. The network
also provides no explicit noti�cation about its state to the source (Source
Quench messages are rarely used, and Floyd's (1995) Explicit Congestion
Noti�cation is yet to be deployed), further complicating the task of the source.
The source needs to make control decisions about the network by guessing the
state of the network from the information it has: the ACKs it receives from
the sink, and the timing information it obtains by estimating the round trip
time (RTT) of the transmitted packets.
In the absence of explicit feedback from the network to the source, schemes

in two 
avors have been proposed to provide high throughput with low delay.
The �rst kind, such as Tri-S (Wang & Crowcroft 1991), RED gateways(Floyd
& Jacobson 1993) and SACK (Mathis et al. 1996) (with associated algorithms
such as FACK (Mathis & Mahdavi 1996)), extend the functionality of routers
or TCP sinks to provide this missing feedback. Others, such as CARD (Con-
gestion Avoidance using Round-trip Delay) (Jain 1989), Keshav (1991), the
DUAL algorithm (Wang & Crowcroft 1992), TCP Vegas (Brakmo et al. 1994)
and Hoe (1996), focus on the transport-layer protocol at the source. For ex-
ample, Vegas allows TCP to stop below the point where it would lose packets,
hence providing a smoother stream. Ahn, Danzig, Liu & Yan (1995) show
that Vegas achieves from 3 to 8% better throughput, with only 1/5 to 1/2 of
the losses, as compared to the BSD-Reno distribution, though the stability of
Vegas has been questioned by Jacobson (1994).
Reno sources exhibit a start-stop behavior because they increase their win-

dow sizes, �lling up bu�ers in the network and consequently su�ering a packet
loss or a timeout and falling back to a smaller window size. No attempt is made
to predict the optimal window size: the size at which the (bandwidth-delay
product) pipe is full and the bu�ers are empty.
In this paper we propose a method to improve congestion control in TCP

without requiring any additional explicit information from the sink or the
network. Our goals are to

� make TCP seek the optimal window size and operate close to it. This leads
to

{ lower delay, which results in higher network power� and faster recovery
from multiple losses.

{ lower bu�er occupancies, which allows routers to support a higher load
for a given bu�er size; conversely, a smaller bu�er can be used to support
the same load (without a corresponding increase in the number of packet
losses).

{ a reduction in 
uctuations in the round-trip delay and the number of

�Network power is de�ned as the ratio of throughput to delay (Jain 1989, Kleinrock 1979).
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packets in the network, allowing better interaction with non-TCP tra�c
such as real-time streams.

� only make modi�cations that are simple enough to incorporate into current
TCP implementations.

TCP-BFA is similar to Reno. It realizes the above goals primarily by freez-
ing the congestion window on a sustained increase in RTT. Upon detecting
a sustained decrease in RTT, TCP-BFA reverts to normal Reno behavior.
Hysteresis is used to avoid rapid 
ipping between the two states. To detect
sustained changes in RTT, TCP-BFA uses an extra state variable that main-
tains the signed RTT variance. Since TCP-BFA relies heavily on RTT esti-
mates, a timer granularity �ner than the usual 500ms is required. It should
be stressed, however, that this �ner granularity is used only for RTT esti-
mates; the retransmission timeout (RTO) is still calculated with the coarse

500ms granularity for stability reasons (Jacobson 1994). Since TCP-BFA has
the additive increase and multiplicative decrease properties of Reno, with the
change that additive increase is sometimes stopped, it is stable� if Reno is
stable.
Our simulations show that TCP-BFA requires considerably less bu�er space

in routers to attain the same throughput as Reno. Both the simulations and
the Internet measurements show that TCP-BFA achieves smaller RTT aver-
ages { thus up to an order of magnitude higher network power { than Reno.
When TCP-BFA shares the bottleneck link with one or more Reno sources,
the gains in network power are modest to nonexistent since the Reno sources
force higher bu�er occupancies. In this situation, simulations indicate that
TCP-BFA achieves a higher throughput than Reno, while the measurements
show comparable values. It might appear that TCP-BFA will always be in
competition with Reno, but we can expect a single form of TCP on a large
number of paths with the bottleneck at the tail link (e.g., home PCs behind
low speed modems).
The proposed algorithm and the concepts behind it are discussed in Sec-

tion 2. In Section 3 we provide a simple implementation which is a heuristic
approximation to the discussed algorithm. Sections 4 and 5 report simula-
tion results and Internet measurements, respectively. Section 6 concludes the
paper.

2 OPTIMAL WINDOW SIZE

Consider a source that uses window-based 
ow control connected to a sink
through a number of links and bu�ers with out-of-band ACKs. Figure 1 (from
(Jain 1989)) shows typical throughput, delay and power curves plotted against

�By stable, we mean that it does not fall o� the cli� of Figure 1 (see Section 2).
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window size for this scenario. An e�cient window 
ow control protocol should
operate at the point N� where the throughput reaches a plateau and the
delay starts increasing. Increasing the window size N beyond this point will
not signi�cantly improve the throughput but will increase the delay. Note
that N� lies on the knee of the delay curve. It can be shown (Fendick, Mitra,
Mitrani, Rodriguez, Seery & Weiss 1991) that the value of N� is very close,
but slightly higher, than the value Nf , where Nf is the number of packets
that can be stored in the bandwidth-delay product pipe between the source
and the sink (with zero occupancy of the bu�ers). Basically, we need N� > Nf

to account for the stochastic nature of the tra�c arrival pattern: this ensures
that the bottleneck link remains fully utilized.
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Figure 1 Window 
ow control: the
optimal window size. The plots are
for a single source running on an un-
loaded network.
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Figure 2 Window 
ow control: dy-
namic network behavior. The plots
are for a source running on a loaded
network.

If the source starts with a window size of one it will experience the smallest
RTT (D0 in the �gure). As the window size increases, the RTT will stay
constant at D0 (� Df � D�) until the source reaches the point where it
starts �lling bu�ers and increasing the RTT (this happens when it reaches
N�). Now,

for N < N�; RTT � D� = N�=�;

for N > N�; RTT = N=�;

where � is the rate at which the ACKs arrive at the source (i.e., our share
of the bottleneck link bandwidth). Note that for N < N�, the window is not
big enough to cover the RTT and silence periods are introduced, leading to
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underutilization of the network. On the other hand, for N > N�, packets
accumulate at the bu�ers and RTT > D�.
Figure 2 illustrates the e�ect on delay caused by varying network load. We

see that the points D�, N�, and the slope vary with the load. The variation
of D� may not be obvious: it can occur due to routing changes, and/or con-
stant background load generated by open-loop sources (such as multicast or
streamed tra�c).
The source will have a set of curves depending on the network load and

network events (such as failing links, routing changes, etc.), but in all cases
the following algorithm� will track the optimal window size N�:

if ( @RTT=@N > � ) decrease N

else increase N

where @RTT=@N is the partial derivative of delay with respect to window
size, and � is a small relative threshold value close to zero.
In practice, estimating @RTT=@N is di�cult, given the dynamic nature of

the network and its tra�c. However, what we need to estimate is the sign of
this quantity rather than the magnitude. Observing the fact that, for TCP,
N is always increasing (except during packet losses, which can be handled
separately), we can simplify the problem further to the estimation of the sign
of @RTT. This simpli�cation is the essence of our implementation, as described
in the following section.
Previous work on tracking the optimal window size has used a variety of

metrics: Jain (1989) proposes an algorithm (CARD) based on maximizing
network power (see Figure 1); Wang & Crowcroft (1991) use the derivative of
sending rate with respect to window size @�=@N (Tri-S); and Brakmo et al.
(1994) use the di�erence between the actual throughput and an expected value
(Vegas).

3 IMPLEMENTATION

We now introduce a simple heuristic approach that constrains TCP to operate
close to the (continuously varying) N�. Our changes are easy to integrate with
current TCP implementations.

3.1 Timer Granularity

Current TCP implementations use RTT estimates only for the calculation
of RTO. Our modi�ed implementation uses RTT estimates for congestion
control, and the 500ms timer granularity is too coarse for this purpose. We

�This follows from (Jain 1989).
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increased the granularity with which RTT estimates are measured to 10ms,
while maintaining the same coarse granularity for RTO estimates. Achieving
this �ner granularity is straightforward and does not involve any changes in
the transmit timer function of TCP; we simply rede�ned the meaning of a
timer tick.

3.2 Signed RTT Variance

We maintain a signed RTT variance� as an extra TCP state variable; this is
our approximation to @RTT. We cannot use the (unsigned) RTT variance al-
ready maintained by TCP because it measures absolute di�erences. The signed
RTT variance uses non-absolute di�erences and a �lter gain constant (�srv)
of 1

2
instead of the 3

4
used by the unsigned RTT variance of (Jacobson 1988);

its computation is otherwise identical to that of the RTT variance already
present in Reno implementations. The gain constant of 1

2
was determined by

experiment to provide a good balance between minimizing the error due to
randomness and maximizing reactivity to network changes. Using the signed
RTT variance instead of variables involving the (current) measured RTT has
the e�ect of �ltering out transient network noise. Note that use of the times-
tamp TCP option improves the accuracy of the signed RTT variance because
RTT samples are more frequent.

3.3 Bu�er Fill Avoidance

We have introduced an additional TCP variable (BFA Flag) to de�ne a new
state, Bu�er Fill Avoidance (BFA), in which the congestion window (cwnd) is
held constant.
This state is entered, either from Slow Start or from Congestion Avoidance,

whenever the signed RTT variance indicates a positive drift in RTT. The BFA
state is left when there is a negative drift. To prevent rapid oscillation between
states, we introduce hysteresis using separate thresholds for setting and clear-
ing the 
ag. The BFA Flag is set as follows:

if ( BFA Flag is on )

if (Signed RTT Variance <= �o�)

switch off BFA Flag

else

if (Signed RTT Variance > �on)

switch on BFA Flag

�Let srv = signed RTT variance, �srv = �lter gain constant, and � = measured RTT -
smoothed RTT. Then, srvt+1 = �srv:srvt + (1� �srv):�.
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where �o� and �on are the switch-o� and switch-on thresholds, respectively
(�o� < �on for hysteresis). In addition, the BFA Flag is cleared whenever the
congestion window drops due to a timeout or a fast retransmit.
If the threshold values are not properly tuned, the source can make false

inferences about the state of the network. For instance, if the BFA Flag is
set and the network load is constant, the signed variance tends to zero. If
�o� is non-negative, this will cause the BFA Flag to be switched o� in spite
of the constant load, which is clearly incorrect. Similarly, �on needs to be
constrained to positive values. By adjusting the values of �o� and �on the
source can be tuned from `very aggressive' to `extremely well-behaved'. We
have used �o� = �10ms and �on = 10ms.
As described in Section 2, a more proactive scheme would decrease the con-

gestion window in an attempt to track the optimal value. We have chosen the
simpler scheme of �xing the window and relying on normal TCP mechanisms
for the decrease. The reason for this choice is that decreasing the window size
makes the source much less aggressive, which causes it to yield bandwidth to
Reno sources.

4 SIMULATION RESULTS

10Mbps,
10 ms

10Mbps,
10 ms

K1

64 Kbps, 100 ms

S1

R1 R2

S2 K2

Figure 3 Simulation Scenario

The results presented here have been obtained from the network simulator
ns 2.1 (McCanne & Floyd 1997) developed at LBNL.� The scenario used for
most of the simulations is shown in Figure 3. It models network paths with a
single bottleneck link. This includes paths with a tail bottleneck (in the case
of a machine behind a slow modem link) since the links between S* and R1,
and those between R2 and K*, never bu�er packets. In fact, simulations with
the bottleneck between R2 and any of the K* yield the same behavior.
All routers use tail-drop bu�ers. The bottleneck link bandwidth of 64 Kbps

represents link speeds of today's modems, and has the excellent side-e�ect of
producing trace �les of reasonable size! Simulations with higher bandwidths
(such as 1.5 Mbps) gave similar results. The receiver window is set to a large
value so that it does not limit the increase in the size of the congestion window.

�The ns 2.1 implementation of TCP-BFA can be downloaded from
http://klamath.stanford.edu/~aaa/tcp-bfa.
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The TCP agent uses a packet size of 1000 bytes (64 Kbps translates to 8.0
packets/sec). All transfers are FTP bulk data transfers. Bu�er size is measured
in packets, and throughput in packets/sec.

4.1 Single Sources

A typical queue behavior for Reno and TCP-BFA running separately on com-
pletely unloaded networks is shown in Figure 4. The graph clearly indicates
that TCP-BFA uses less bu�er space and generates smoother tra�c. We also
observe that Reno su�ers periodic losses while there are no drops for TCP-
BFA.

TCP−BFA

Reno

Drops (for Reno)

Time (sec)
4003002001000

Buffer Occupancy (packets)

20

15

10

5

0

Figure 4 Typical bu�er occupancies at the bottleneck R1 for separate sim-
ulation runs of Reno and TCP-BFA (bu�er size = 20 packets).

Figures 5 and 6 show throughput and power after 400 seconds of simulation
time, plotted against the bottleneck bu�er size.� Figure 5 shows that Reno's
throughput falls when the bu�er size increases. This happens because the
maximum delay possible (the delay when the bu�er is full) increases with
the bu�er size. A large delay causes an increase in retransmission timeout
(RTO) estimates, leading to a larger recovery time when there are multiple
losses. In this scenario, multiple losses occur only during the initial slow-start.
These simulations were run for a constant time of 400 seconds; the decrease
in throughput will be greater for connections that are more short-lived.
The drop in Reno's network power seen in Figure 6 is due to the com-

pounded e�ects of a lower throughput and a higher delay. In contrast, for
TCP-BFA, the throughput and power remain constant regardless of the bu�er
size. This is because TCP-BFA stops increasing its window size when the
bu�er starts to �ll.

�Note that each point on these plots represents a complete simulation run.
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Figure 5 Throughput against bot-
tleneck bu�er size for Reno and TCP-
BFA sources running separately.
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Figure 6 Network power against
bottleneck bu�er size for Reno and
TCP-BFA sources running sepa-
rately.

4.2 Competing Sources

TCP-BFA sources running in competition with each other retain the bene�ts
mentioned for a single source in Section 4.1. They avoid overuse of network
bu�ers while maintaining high throughput and generate smooth tra�c pat-
terns. Figure 7 shows that two BFA sources (starting together) do not take
any more bu�er space than one source (compare with Figure 4). For Reno
sources also, the average bu�er occupancy stays the same but there is greater

uctuation and more frequent drops.

Time (sec)
4003001000

0

5

10

15

20

Buffer Occupancy (packets)

Reno vs. Reno

TCP−BFA vs. TCP−BFA

Drops (for Reno vs. Reno)

200

Figure 7 Bottleneck bu�er occupancy for: Reno vs. Reno and TCP-BFA vs.
TCP-BFA (bu�er size = 20 packets).

Figures 8 and 9 are plots of throughput and network power versus bottle-
neck bu�er size for three di�erent scenarios: TCP-BFA vs. TCP-BFA, TCP-
BFA vs. Reno and Reno vs. Reno, with both sources starting at the same
time in each case. The simulation time for each run is 1000 seconds; when the
bu�er size is greater than 50 packets, it takes longer to reach steady state (see
Figure 10).
First we note that after a certain bu�er size all scenarios have similar ag-
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Figure 8 Throughput against bot-
tleneck bu�er size for TCP-BFA vs.
TCP-BFA, TCP-BFA vs. Reno and
Reno vs. Reno
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Figure 9 Network power against
bottleneck bu�er size for TCP-BFA
vs. TCP-BFA, TCP-BFA vs. Reno
and Reno vs. Reno.

gregate throughput. This is because the bu�ers are never empty, hence the
bottleneck link is always fully utilized. The plots show that when TCP-BFA
sources compete with each other, network power is much higher than for
any of the other scenarios. When TCP-BFA competes with Reno, TCP-BFA
achieves higher throughput and network power. However, the network power
is far less than that achieved while competing with another TCP-BFA source.
This is because the Reno source will �ll up the network bu�ers anyway, thus
increasing delay. TCP-BFA will observe this same high network delay.
Figure 10 shows that TCP-BFA on average maintains a higher congestion

window than Reno. This explains why TCP-BFA achieves higher throughput.
The reason why Reno has smaller window sizes is that it su�ers more losses.
This is because, for any drop-tail bu�er, packets are more likely to be dropped
if they arrive in bursts. A TCP source generates back-to-back packets when
its window size is increasing since multiple packets are sent for each ACK
received. When the window size is constant, as in TCP-BFA's Bu�er Fill
Avoidance state, no back-to-back packets will be generated. Note that Reno
sources will not have a disadvantage in RED bu�ers since they do not punish
bursty sources. This conclusion has been veri�ed by initial simulations with
RED routers.

4.3 Fairness

Figure 8 shows that TCP-BFA sources starting together are perfectly fair,�

with exactly the same throughput. Figure 11 shows the throughput plotted
against bu�er size for six TCP-BFA sources starting at di�erent times. The
�rst source initially stops its window size increase at a higher value than the
others because it was the only source in the network when it started. This

�By fairness we mean the equal division of bandwidth between competing sources.
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Figure 10 Typical congestion window variation for Reno and TCP-BFA
sources in competition (bu�er size = 20 packets).

unfair situation will persist unless there are losses or changes in delay. For our
simulation scenario, Figure 11 shows that there are no losses (and therefore
persistent unfairness) for large bu�er sizes.
Figure 12 shows plots of Jain's (1991) Fairness Index� (�) against bu�er

size for six TCP-BFA or Reno sources starting either together or at di�erent
times.

TCP−BFA sources starting at 5.0,
11.0, 18.0, 26.0 and 35.0 sec.

50403020100
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TCP−BFA source
starting at 0.0 sec.
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Figure 11 Throughput against
bu�er size for six TCP-BFA sources
starting at di�erent times.
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Figure 12 Jain's Fairness Index
plotted against bottleneck bu�er size
for six Reno or TCP-BFA sources,
starting together or at di�erent
times.

We conducted simulations for asymmetric delay paths with two sources.
For a scenario with 25% di�erence in propagation delays, TCP-BFA (� =
1.0000 when starting together, � = 0.8989 when starting at di�erent times)
was fairer than Reno (� = 0.6164 when starting together, � = 0.6467 when

�Jain's Fairness Index = � =
[
P

n

i=1
x
i
]2

n:

P
n

i=1
x2
i

where n is the number of sources, and xi is the

throughput for the ith source. The index is bounded between 0 and 1, with 1 indicating that
all sources had the same throughput. Note that Jain's Fairness Index is a generic metric
that can be applied to any resource.
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starting at di�erent times). The drop in � for Reno (compared to the sym-
metric case) is due to the fact that sources increase their congestion windows
at di�erent rates. TCP-BFA, however, maintains � similar to the symmetric
case because the window size is mostly constant, and the signed RTT variance
is independent of the path delay.
Losses help improve fairness because they reset state and prevent persis-

tence of an unfair situation, such as the one in Figure 11. One way to improve
the fairness of TCP-BFA would be to prevent it from remaining in the Bu�er
Fill Avoidance state for a long time. This could be achieved by adding a timer
that forces the source to switch o� the BFA Flag, leading to a window size
increase as in Reno, ultimately causing losses. We have chosen not to add this
extra mechanism to TCP-BFA since situations without any losses or changes
in delay do not exist in the real world. Internet measurements with compet-
ing sources show that TCP-BFA is fairer in real-world situations than our
simulations would lead us to believe.

5 INTERNET MEASUREMENTS

In this section we discuss the results obtained from running TCP-BFA and
Reno over the Internet. The FreeBSD 2.1.6 kernel (based on BSD 4.4) was
instrumented to generate logs of various TCP state variables. The scenario
is one of bulk data transfer (5MB FTP) from a 120 MHz Pentium machine
running FreeBSD 2.1.6 to a DEC Alpha machine running OSF/1, across a
transatlantic path of 20 hops with a 64 Kbps bottleneck link adjacent to the
DEC Alpha machine. The receiver bu�er size is 32KB, and the maximum
segment size is 536 bytes. The round trip time for a segment of maximum
size without queuing delay is approximately 320 ms. The bandwidth-delay
product for this path is therefore 2.56KB, which is approximately �ve packets
(this is the optimal window size). We note that when a (single) Reno source
is running the round trip time rises to as much as 4 seconds. This implies
a bandwidth-delay product of 32KB (about 60 packets), which is 12 times
the optimal window size. Runs were made over a six month period at various
times of day to obtain data under di�erent network conditions.
We provide two types of plots for three di�erent levels of congestion.� The

�rst is a conventional congestion window (cwnd) vs. time graph, which also
shows the slow-start-threshold (ssthresh) and the receiver's advertised win-
dow. The second is a scatter-plot of RTT vs. cwnd; it is the real-world coun-
terpart of the ideal plot shown in Figure 2.
When congestion is low, the window size employed by TCP-BFA (Figure 13)

is much smaller than Reno's (Figure 15). In fact, Reno's window could have

�These three levels of congestion represent a spectrum of network conditions from `com-
pletely unloaded' (few or no competing 
ows) to `high level of background tra�c' (large
number of competing 
ows and a high level of packet loss).
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been even larger (possibly resulting in losses) if it were not for the limit im-
posed by the receiver's advertised window size. Despite the large di�erence in
window size, the throughput is similar for both Reno and TCP-BFA, because
the throughput of a TCP source is governed by the rate at which the window

is sliding. The network power is much higher for TCP-BFA. The compara-
ble throughput coupled with higher power means that TCP-BFA must have
a lower delay. This is con�rmed by the RTT vs. cwnd scatter-plots (Figures
14 and 16); TCP-BFA operates closer to the knee than Reno. The staircase
pattern seen in Figure 13 is due to noise in RTT measurements causing the
signed RTT variance to drop below �off momentarily.
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Figure 13 Congestion Window vs.
Time: TCP-BFA, low congestion.
(Throughput = 56.48 Kbps, Power =
54.68 Kb/s2)
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Figure 14 RTT vs. Congestion
Window: TCP-BFA, low congestion.
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Figure 15 Congestion Window vs.
Time: TCP Reno, low congestion.
(Throughput = 56.64 Kbps, Power =
29.02 Kb/s2)
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Figure 16 RTT vs. Congestion
Window: TCP Reno, low congestion
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For medium congestion (Figures 17 and 19), we note some packet losses�

and more noise in the scatter-plots (Figures 18 and 20). TCP-BFA does not
achieve high power in this case because there is competition with other sources
at the bottleneck. In today's Internet, we can expect most of these sources
to be Reno sources. It is important to note that in this situation TCP-BFA
has adapted to behave more like Reno so that it does not lose throughput to
competing Reno sources. �srv can be increased to make TCP-BFA operate
closer to the knee, though this will make it less aggressive and could cause it
to yield throughput to competing Reno sources. Figures 21 and 22 show plots
for TCP-BFA with �srv = 3

4
(instead of the usual 1

2
). Figure 22 shows the

tighter clustering of RTT vs.cwnd points around the knee.
TCP-BFA (Figure 23) and Reno (Figure 25) behave similarly during very

high congestion. The scatter-plots (Figures 24 and 26) show that the network
is not providing the sources with useful information, and the cwnd graphs
show a large number of losses, with cwnd never rising over a few packets.
Unlike the simulation results described in the previous section, measure-

ments for competing TCP-BFA sources show fair allocation of the bottleneck
bandwidth. Runs were conducted with three TCP-BFA sources in competition
at a time when there was little background tra�c. The average value of Jain's
Fairness Index for these runs was 0.9991 (the corresponding value for Reno
sources was 0.9991), which is much higher than predicted by the simulations
(0.89).
This results from the fact that natural losses and delay variations exist

intrinsically in the real Internet. This prevents any TCP-BFA source from
freezing its congestion window at a large size and monopolizing the bottleneck
link. Measurements also revealed that TCP-BFA sources competing with Reno
do not achieve larger throughput, but rather achieve throughputs slightly
lower than Reno.

6 CONCLUSIONS AND FUTURE WORK

Both Reno's and TCP-BFA's congestion control mechanisms keep their con-
gestion window size in the the region between the knee and cli� of Figure 1.
The di�erence is that while Reno constantly drifts towards the cli�, TCP-
BFA attempts to keep the window size as close to the knee as possible. Reno
continues to increase the number of packets it sends into the network, even
when the delay is rising. This continues until some bu�er �lls up and packets
are lost. On the other hand, TCP-BFA will refrain from increasing its window
size whenever it detects a sustained increase in delay. However, when TCP-
BFA sources compete with Reno sources they are forced to operate closer to
the cli�.
TCP-BFA retains the additive increase / multiplicative decrease mechanism

�The spikes in these plots are due to temporary cwnd in
ation during fast recovery.
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Figure 17 Congestion Window vs.
Time: TCP-BFA, medium conges-
tion. (Throughput = 37.68 Kbps,
Power = 19.84 Kb/s2)
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Figure 18 RTT vs. Congestion
Window: TCP-BFA, medium conges-
tion
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Figure 19 Congestion Window vs.
Time: TCP Reno, medium conges-
tion. (Throughput = 35.28 Kbps,
Power = 17.49 Kb/s2)
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Figure 20 RTT vs. Congestion
Window: TCP Reno, medium conges-
tion
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Figure 21 Congestion Window vs.
Time: TCP-BFA with �srv = 3

4
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(Throughput = 49.69 Kbps, Power =
70.17 Kb/s2)
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Figure 23 Congestion Window vs.
Time: TCP-BFA, high congestion.
(Throughput = 8.80 Kbps, Power =
6.01 Kb/s2)
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Figure 24 RTT vs. Congestion
Window: TCP-BFA, high congestion
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Figure 25 Congestion Window vs.
Time: TCP Reno, high congestion.
(Throughput = 9.52 Kbps, Power =
6.03 Kb/s2)
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Figure 26 RTT vs. Congestion
Window: TCP Reno, high congestion

of Reno, with the addition that it sometimes halts additive increase. If TCP-
BFA reaches the cli� it reacts in the same manner as Reno (multiplicative
decrease). This implies that if Reno is stable, TCP-BFA is stable.
The most important bene�t of using TCP-BFA is that it leads to lower

network bu�er occupancies { which we have demonstrated by simulations.
Both simulations and Internet measurements show that TCP-BFA sources
are able to achieve a considerable improvement in network power over Reno
sources, except if there is high congestion, when they perform just as well.
The results also demonstrate that competing TCP-BFA sources achieve higher
power and experience less losses than competing Reno sources. Simulations
demonstrated that TCP-BFA sources get a higher share of throughput when
competing with Reno sources. However, for our speci�c set of measurements,
TCP-BFA sources achieved slightly lower throughput. Results also demon-
strated that TCP-BFA has fewer losses, con�rming that TCP-BFA sources
avoid the cli�. We claim that if Reno is replaced with TCP-BFA, the end-
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station will get similar throughput and higher reactivity to network events
due to lower delays, while the network will see lower bu�er occupancies.
This work is di�erent from Vegas in that it is simpler to implement and

avoids some of Vegas' pitfalls, speci�cally: possible instability due to the use
of �ner granularity timeout values, yielding of bandwidth when competing
with Reno sources, and incorrect behavior when there are route changes.�

Future research should include the investigation of a scheme which seeks the
optimal window size more aggressively, for instance by reducing the congestion
window when the signed variance is very high. The danger for a `nice' scheme
like this is that it can lose bandwidth when operating in competition with more
aggressive sources. For example, Brakmo & Peterson (1995) demonstrated
that Vegas loses throughput in head-to-head transfers against Reno.
Another aspect that deserves further investigation is the dynamic estima-

tion of the thresholds �o� and �on (depending on path characteristics such as
bandwidth and delay). Techniques similar to those developed in Jacobson's
(1997) pathchar can be used to estimate these path characteristics.
The signed RTT variance that we maintain can be used to improve TCP

timeout behavior. In current Reno implementations, the RTO is obtained by
adding the smoothed RTT estimate to 4 times the unsigned RTT variance.
However, if the signed variance is negative, RTT is decreasing and this com-
putation can lead to unnecessarily high RTO estimates. Using a multiplicative
factor of less than 4 in this situation may lead to faster packet loss detection;
the smoothing of the variance should help avoid spurious timeouts.
Since at moments of high congestion the source cannot make correct in-

ferences about the network, we believe that schemes depending on network
routers to assist in congestion avoidance are necessary (e.g., Floyd's (1995)
Explicit Congestion Noti�cation, Floyd & Jacobson's (1993) Random Early
Detection). Routers have a uni�ed view of the queuing behavior over time, and
can therefore make better decisions about the level of congestion compared
to the endpoints which have distorted and delayed information.
Since TCP-BFA sources cause fewer losses and generate smoother tra�c, it

would be interesting to investigate the behavior of TCP-BFA when it interacts
with real-time multimedia streams as compared to Reno sources.
We think deploying fair queuing schedulers will provide TCP-BFA with an

advantage that may allow it to outperform competing Reno sources. This is
because fair queuing provides a separation between di�erent 
ows, hence pre-
venting ill-behaved Reno sources from interfering with the delay of TCP-BFA
sources. Demers, Keshav & Shenker (1989) emphasize that fair queuing sched-
ulers reward sources that use more sophisticated and responsive algorithms.

�TCP-BFA does not rely on a base value for RTT; instead it uses a moving average of the
RTT variance.
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APPENDIX 1 DEPLOYING TCP-BFA

Deploying TCP-BFA in the Internet is a rather straightforward task. Sim-
ple changes (on the order of a few lines of code) need to be made to the
TCP source; no changes are required for the sink. A patch for FreeBSD
2.1.6 network servers that can be applied to netinet/tcp input.c is available
at http://klamath.stanford.edu/~aaa/tcp-bfa. The system administra-
tor may tune TCP-BFA's parameters (�o� , �on, �srv) to modify the behavior
of the TCP-BFA source as described in Section 3.
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